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»   F R O M  T H E  E D I T O R

hat are the key equations that 
changed the control field? 

Reference [1] makes interest-
ing reading about the equations that 
changed the world, including such 
gems as the Gaussian/normal distri-
bution, the Fourier transform (with 
which I associate the Laplace trans-
form), and Shannon’s quantification of 
information, all of which play impor-
tant roles in the control field. But what 
else? Here is an attempt to list the top 
equations in the field. Do you agree? 
Join the conversation by e-mailing me 
at jhow@mit.edu.

 » Lyapunov’s Stability Theorem
Let x 0=  be an equilibrium point 
for a dynamic system ( )x f x=o  
and D Rn1  be a domain contain-
ing .x 0=  Let :V D R"  be a con-
tinuously differentiable function 
such that
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Then x 0=  is Lyapunov stable. 
Moreover, if in D,V x 01o ^ h  then 
x 0=  is asymptotically stable  
[2, p. 100]. 

These expressions provide a 
means for analyzing the stabil-
ity of linear and nonlinear sys-
tems without having to solve 
for the trajectories explicitly. 
A continuously differentiable 
function satisfying these equa-
tions is known as a Lyapunov 
function and is essentially a 
generalized energy function for 
a system. Numerous extensions 

of Lyapunov’s theorem exist, 
including Lasalle’s theorem, 
which relaxes the negative defi-
niteness requirements on .V xo ^ h

 » Sensitivity Constraints
Bode’s sensitivity integral

 ( ) ( )ln S j d R p 0>
i

N

i

0 1

p

~ ~ r=

3

=

/#

gives a constraint on the sensi-
tivity function ( )S s  for a stable 
closed-loop system with a loop 
transfer function ( )L s  for which 
there are at least two more poles 
than zeros and Np  right-half 
plane poles at locations pi  [3, p. 
166]. The expression captures the 
tradeoff that exists in the pos-
sible reduction in the sensitivity 
in different frequency regions, 
thereby conveying a limita-
tion on performance that can be 
achieved. 

The constraint leads to the 
“push-pop” phenomenon (more 
commonly know as the water 
bed effect) in which large reduc-
tions (push) in | |S  in one fre-
quency region to improve per-
formance lead to increases in | |S  
(pop) in other regions, possibly 
leading to issues of poor robust-
ness. Numerous extensions of 
this foundational equation have 

been developed for unstable 
and nonminimum phase sys-
tems. The concept has broad 
applicability, and similar results 
have been shown to hold for bio-
logical systems [4].

 » Lagrange Multipliers
In optimal control problems, 
the equation for the Lagrangian 
function is typically written as

 ( , , ) ( , ) ( , ),x u x u x ufL F Tm m= +

which adjoins the cost function F  
with constraint equations ( , )f x u  
using the Lagrange multipliers .m  

Lagrange multipliers pro-
vide a principled means of 
solving constrained optimiza-
tion problems as unconstrained 
(and thus simpler) problems. 
The Lagrange multipliers asso-
ciated with a constrained opti-
mization can be interpreted as 
the price of a constraint require-
ment, which can provide impor-
tant insights in system-level 
design and economics [5]. The 
generalization of Lagrange 
multipliers to a costate yields a 
closed-form solution of optimal 
control problems [6].

 » Optimal Control
The Hamilton–Jacobi–Bellman 
(HJB) equation
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W Lagrange multipliers provide a principled means 

of solving constrained optimization problems as 

unconstrained (and thus simpler) problems.
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This is a nonlinear partial dif-
ferential equation in ( ( ), )J x t t*  
that is solved backward in time 
from t f  for a problem for which 
the integrand of the cost func-
tion is given by ( ( ), ( ), )g x t u t t  
and the system dynamics are 

( , , ) .x a x u t=o  The equation builds 
on the principle of optimality 
[7] and Pontryagin’s maximum 
principle [8] and is one of the 
foundational results in the field 
of optimal control. Although 
the differential equation is very 
difficult to solve, the approach 
provides a principled means of 
determining the best possible 
solution to a given optimal con-
trol problem and thus is widely 
used and approximated [9]. 

An important example where 
the HJB equation can be solved 
analytically is the case where 
system dynamics are linear with 
Gaussian process and measure-
ment noises and the cost is qua-
dratic. In this case, the solution 
of the HJB equation leads to 
the celebrated linear-quadratic-
Gaussian controller.

 » Riccati Equation
The matrix version of the Riccati 
equation is written as
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which is named after Count 
Jacopo Franceso Riccati (1676–
1754). The general form is a 
first-order ordinary differen-
tial equation that is quadratic 
in the unknown parameter, in 
this case P t^ h. The steady-state 
version of this equation for con-
tinuous P 0=o^ h and discrete 
P Pk k1 =+^ h systems are known 

as the continuous algebraic 

Riccati equation (CARE) and 
discrete algebraic Riccati equa-
tion (DARE), respectively. 

CARE and DARE are nonlin-
ear equations that mainly arise 
when dealing with infinite-
horizon filtering or optimal 
control problems. A solution to 
CARE/DARE can be obtained 
by matrix factorizations or by 
iterating on the Riccati equa-
tion. This foundational equa-
tion appears regularly because 
it provides the solution to the 
linear-quadratic-regulator prob-
lem, the Kalman filter problem, 
the H3 -control-design problem, 
as well as many others [3].

 » Bayes’ Rule
Bayes’ rule is written as
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which, given the joint prob-
ability density function ( , )f x y,x y  
for random variables x  and ,y  
provides a means of relating 
the conditional probabilities of 
x  and .y  The rule was named 
after Thomas Bayes, but his 
work was significantly updated 
by Richard Price before being 
posthumously presented to the 
Royal Society in 1763 [10]. Bayes’ 
rule provides a direct way to 
relate the prior and posterior 
probability density functions of 
a quantity after measurements 
or observations have been made. 

As a result, Bayes’ rule is a 
foundational result for estima-
tion and reinforcement learn-
ing. The importance of the 
result is perhaps best captured 
by the quote from Sir Harold 
Jeffreys, who wrote that “This 
theorem (due to Bayes) is to 
the theory of probability what 

Pythagoras’s theorem is to 
geometry” [11, p. 31].

 » Least Squares 
The solution to the least-squares 
problem min y Axx 2-  can be 
written as

 ,x A y= @

where A@  is the pseudoinverse 
or Moore–Penrose generalized 
inverse of A . While the result 
is often attributed to Gauss in 
1809, the original developer is 
open to some dispute [12]. 

Least-squares methods are 
ubiquitous and play an impor-
tant role in fitting data, such as in 
system-identification methods. 
Also note that if A AT  is positive 
definite and thus has a unique 
inverse, ( ) ,A A A AT T1=@ -  which 
is immediately recognizable as 
being of the same form as the 
steady-state gain for a Kalman 
filter [13].

 » Small Gain
Consider a system with a stable 
loop-transfer function L s^ h. 
Then the closed-loop system is 
stable if

 ( ) ,L j 1 for all<~ ~

where $  denotes any matrix 
norm satisfying AB # A B$  
[3, p. 150]. While often conservative 
because it ignores phase informa-
tion, the test provides a launching 
point for robust control. The form 
given here generalizes to enable 
the input–output stability analy-
sis of nonlinear time-varying sys-
tems [14]. The approach also leads 
to extensions of absolute stabil-
ity theory (with multipliers) [15], 
ultimately leading to Km  analysis 
[16] (closely related to the complex 
structured singular value n) [17].

As a result, Bayes’ rule is a foundational result 

for estimation and reinforcement learning.
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 » S-Procedure
Let , { , , },F i p0i f!  be quadratic 
functions of the variable x Rn!  
of the form

( )F x x T x u x v2 ,i
T

i i
T

i= + +  

where .T Ti i
T=  The goal is to 

consider the following condition 
on the Fi s
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then (1) holds. This considers 
problems of the form in which 
some quadratic function is 
positive whenever some other 
quadratic functions are all posi-
tive [18]. The importance of the 
S-procedure is that it provides 
a means of verifying (1) using 
(2), which is useful in that (2) is 
generally in a much simpler form 
than (1). 

The procedure dates to Lur’e 
and Postnikov [19], with more re-
cent significant contributions by 
Yakubovich [20]. The procedure 

is particularly important for 
composing linear matrix in-
equalities, which play a very im-
portant role in the robust control 
literature [18].

ThE NExT EquATION
What do you think is missing? E-mail 
me at jhow@mit.edu with what should 
be added to the list.
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Sensitivity Reduction

The problem of sensitivity reduction by feedback is formulated as an optimization problem and separated from 
the problem of stabilization. Stable feedback schemes obtainable from a given plant are parameterized. Salient 

properties of sensitivity reducing schemes are derived, and it is shown that plant uncertainty reduces the ability 
of feedback to reduce sensitivity. The theory is developed for input-output systems in a general setting of Banach 
algebras, and then specialized to a class of multivariable, time-invariant systems characterized by n x n matrices 
of H∞ frequency response functions, either with or without zeros in the right half-plane. … we shall be concerned 
with the effects of feedback on uncertainty, where uncertainty occurs either in the form of an additive disturbance 
d at the output of a linear plant P, or an additive perturbation in P representing “plant uncertainty.” We shall 
approach this subject from the point of view of classical sensitivity theory, with the difference that feedbacks will 
not only reduce but actually optimize sensitivity in an appropriate sense.

— George Zames
“Feedback and optimal sensitivity: Model reference transformations, 

multiplicative seminorms, and approximate inverses,”
IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 301–320, 1981


